
Secrets of “printf”

Professor Don Colton

Brigham Young University Hawaii

printf is the C language function to do format-
ted printing. The same function is also available in
PERL. This paper explains how printf works, and
how to design the proper formatting specification for
any occasion.

1 Background

In the early days, computer programmers would
write their own subroutines to read in and print out
numbers. It is not terribly difficult, actually. Just
allocate a character array to hold the result, divide
the number by ten, keep the remainder, add x30 to
it, and store it at the end of the array. Repeat the
process until all the digits are found. Then print it.
Too easy, right?

But even though it was easy (for Einstein), it still
took some effort. And what about error checking,
and negative numbers? So the computer program-
mers brought forth libraries of prerecorded func-
tions. And it was good. Eventually the most popular
of these functions were canonized into membership
in the “standard” libraries. Number printing was
popular enough to gain this hallowed honor.

This meant that programmers did not have to
reinvent the number-printing subroutine again and
again. It also meant that everybody’s favorite op-
tions tried to make it into the standard.

Thus was printf born.

2 Simple Printing

In the most simple case, printf takes one argument:
a string of characters to be printed. This string is
composed of characters, each of which is printed ex-
actly as it appears. So printf("xyz"); would sim-
ply print an x, then a y, and finally a z. This is not
exactly “formatted” printing, but it is still the basis
of what printf does.

2.1 Naturally Special Characters

To identify the start of the string, we put a double-
quote (") at the front. To identify the end of the
string we put another double-quote at the end. But
what if we want to actually print a double-quote?
We can’t exactly put a double-quote in the middle
of the string because it would be mistaken for the
end-of-string marker. Double-quote is a special char-
acter. The normal print-what-you-see rules do not
apply.

Different languages take different approaches to
this problem. Some require the special character to
be entered twice. C uses backslash (virgule, \) as
an escape character to change the meaning of the
next character after it. Thus, to print a double-
quote you type in backslash double-quote. To print
a backslash, you must escape it by typing another
backslash in front of it. The first backslash means
“give the next character its alternate meaning.” The
second backslash has an alternate meaning of “print
a backslash.”

Without a backslash, special characters have a
natural special meaning. With a backslash they
print as they appear. Here is a partial list.

\ escape the next character
\\ print a backslash
" start or end of string
\" print a double quote
’ start or end a character constant
\’ print a single quote
% start a format specification
\% print a percent sign

2.2 Alternately Special Characters

On the other hand we have characters that normally
print as you would expect, but when you add a back-
slash, then they become special. An example is the
newline character. To print an n, we simply type in
an n. To print a newline, we type in a \n, thus in-

voking the alternate meaning of n, which is newline.
Here is a partial list.

\a audible alert (bell)
\b backspace
\f form feed
\n newline (linefeed)
\r carriage return
\t tab
\v vertical tab

3 Format Specifications

The real power of printf is when we are printing the
contents of variables. Let’s take the format specifier
%d for example. This prints a number. So, a num-
ber must be provided for printing. This is done by
adding another argument to the printf statement,
as shown here.

int age;
age = 25;
printf ("I am %d years old\n", age);

In this example, printf has two arguments. The
first is a string: "I am %d years old\n". The sec-
ond is an integer, age.

3.1 The Argument List

When printf processes its arguments, it starts
printing the characters it finds in the first argument,
one by one. When it finds a percent it knows it
has a format specification. It goes to the next ar-
gument and uses its value, printing it according to
that format specification. It then returns to printing
a character at a time (from the first argument).

It is okay to include more than one format speci-
fication in the printf string. In that case, the first
format specification goes with the first additional ar-
gument, second goes with second, and so forth. Here
is an example:

int x = 5, y = 10;
printf ("x is %d and y is %d\n", x, y);

3.2 Percent

Every format specification starts with a percent sign
and ends with a letter. The letters are chosen to have
some mnemonic meaning. Here is a partial list:

%c print a single character
%d print a decimal (base 10) number
%e print an exponential floating-point number
%f print a floating-point number
%g print a general-format floating-point number
%i print an integer in base 10
%o print a number in octal (base 8)
%s print a string of characters
%u print an unsigned decimal (base 10) number
%x print a number in hexidecimal (base 16)
%% print a percent sign (\% also works)

To print a number in the simple way, the format
specifier is simply %d. Here are some sample cases
and results.

printf produces
("%d",0) 0
("%d",-7) -7
("%d",1560133635) 1560133635
("%d",-2035065302) -2035065302

Notice that in the simple, %d way, there is no pre-
determined size for the result. printf simply takes
as much space as it needs.

3.3 The Width Option

As I mentioned above, simply printing numbers was
not enough. There were special options that were de-
sired. The most important was probably the width
option. By saying %5d the number was guaranteed
to take up five spaces (more if necessary, never less).
This was very useful in printing tables because small
and large numbers both took the same amount of
space. Nearly all printing was monospaced in those
days, which means that a w and an i both took the
same amount of space. This is still common in text
editors used by programmers.

To print a number with a certain (minimum)
width, say 5 spaces wide, the format specifier is %5d.
Here are some sample cases and results. (We will
use the symbol to explicitly indicate a space.)

printf produces
("%5d",0) 0
("%5d",-7) -7
("%5d",1560133635) 1560133635
("%5d",-2035065302) -2035065302

Notice that for shorter numbers, the result is
padded out with leading spaces. For excessively long

numbers there is no padding, and the full number is
printed.

In normal usage, one would make the field wide
enough for the biggest number one would ever ex-
pect. If your numbers are usually one, two, or three
digits long, then %3d is probably adequate. In ab-
normal usage, one could end up printing a number
that is too big for the field. printf makes the deci-
sion to print such numbers fully, even though they
take too much space. This is because it is better to
print the right answer and look ugly than to print
the wrong answer and look pretty.

3.4 Filling the Extra Space

When printing a small number like 27 in a %5d field,
the question then became where to put the 27 and
what to put in the other three slots. It could be
printed in the first two spaces, the last two spaces,
or maybe the middle two spaces (if that can be deter-
mined). The empty spaces could be filled with the
blank character, or perhaps stars (***27 or 27***
or **27*), or dollar signs ($$$27), or equal signs
(===27), or leading zeros (like 00027).

These extra characters are often called “check pro-
tection” characters because the are intended to pre-
vent bad guys from changing the dollar amount on a
printed check. It is relatively easy to change a space
into something else. It is harder to change a star, a
dollar sign, or an equal sign.
printf provides space fill (left or right) and zero

fill (left only). If you want check protection or cen-
tering you need to make other arrangements. But
even without check protection or centering printf
still has an impressive (and bewildering) collection
of options.

3.5 The Justify Option

Using printf numbers can be left-justified (printed
in the left side of the field) or right-justified (printed
in the right side of the field). The most natural way
to print numbers seems to be right-justified with
leading spaces. That is what %5d means: print a
base-10 number in a field of width 5, with the num-
ber right-aligned and front-filled with spaces.

To make the number left-aligned, a minus sign is
added to the format specifier. To print a number 5
spaces wide and left-justified (left-aligned) the for-
mat specifier is %-5d. Here are some sample cases
and results.

printf produces
("%-5d",0) 0
("%-5d",-7) -7
("%-5d",1560133635) 1560133635
("%-5d",-2035065302) -2035065302

As before, for shorter numbers, the result is
padded out with spaces. For longer numbers there
is no padding, and the number is not shortened.

3.6 The Zero-Fill Option

To make things line up nice and pretty, it is common
to write a date using leading zeros. We can write
May 5, 2003 in the US as 05/05/2003. We could also
write it as 2003.05.05. Notice that in both cases, the
leading zeros do not change the meaning. They just
make it line up nicely in lists.

When a number is zero-filled, the zeros always go
in front, and the resulting number is both left- and
right-justified. In this case the minus sign has no
effect. To print a zero-filled number 5 spaces wide
the format specifier is %05d. Here are some sample
cases and results.

printf produces
("%05d",0) 00000
("%05d",-7) -0007
("%05d",1560133635) 1560133635
("%05d",-2035065302) -2035065302

Shorter numbers are padded out with leading ze-
ros. Longer numbers are unchanged.

3.7 Fun With Plus Signs

Negative numbers always print with a minus sign.
Positive numbers and zero usually do not print with
a sign, but you can request one. A plus (+) in the
format specifier makes that request.

To print a signed number 5 spaces wide the format
specifier is %+5d. Here are some sample cases and
results.

printf produces
("%+5d",0) +0
("%+5d",-7) -7
("%+5d",1560133635) +1560133635
("%+5d",-2035065302) -2035065302

Notice that zero is treated as a positive number.
Shorter numbers are padded. Longer numbers are
unchanged.

Plus and minus are not related. Both can appear
in a format specifier.

3.8 The Invisible Plus Sign

This one is a little bizarre. It is an invisible plus
sign. Instead of printing a plus on positive numbers
(and zero), we print a space where the sign would go.
This can be useful in printing left-justified numbers
where you want the minus signs to really stand out.
Notice these two alternatives.

printf produces
("%+-5d",0) +0
("%+-5d",-7) -7
("%+-5d",1560133635) +1560133635
("%+-5d",-2035065302) -2035065302

printf produces
("% -5d",0) 0
("% -5d",-7) -7
("% -5d",1560133635) 1560133635
("% -5d",-2035065302) -2035065302

Remember from above that the format specifier
%-5d we get the following results (shown again for
easier comparison).

printf produces
("%-5d",0) 0
("%-5d",-7) -7
("%-5d",1560133635) 1560133635
("%-5d",-2035065302) -2035065302

Notice that the plus signs disappear, but the sign
still takes up space at the front of the number.

Notice also that we can combine several options
in the same format specifier. In this case, we have
combined the options plus, minus, and five, or space,
minus, and five, or just minus and five.

3.9 Plus, Space, and Zero

Here is another example of combining several options
at the same time.

Using the format specifier % 05d or %0 5d we get
the following results.

printf produces
("% 05d",0) 0000
("% 05d",-7) -0007
("% 05d",1560133635) 1560133635
("% 05d",-2035065302) -2035065302

Using the format specifier %+05d or %0+5d we get
the following results.

printf produces
("%+05d",0) +0000
("%+05d",-7) -0007
("%+05d",1560133635) +1560133635
("%+05d",-2035065302) -2035065302

When we combine plus and space at the same
time, the space arranges for room for a sign and
the plus uses it. It is the same as if the space was
not even specified. The plus takes priority over the
space.

3.10 Summary

The options are also called “flags” and among them-
selves they can appear in any order. Here is a partial
list.

flag effect
none print normally (right justify, space fill)
- left justify
0 leading zero fill
+ print plus on positive numbers
 invisible plus sign

After the options, if any, the minimum field width
can be specified.

4 Printing Strings

The %s option allows us to print a string inside a
string. Here is an example.

char * grade;
if (year == 11) grade = "junior";
printf ("%s is a %s\n", "Fred", grade);

The left-justify flag applies to strings, but of
course the zero fill, plus sign, and invisible plus sign
are meaningless.

printf produces
("%5s","")
("%5s","a") a
("%5s","ab") ab
("%5s","abcdefg") abcdefg

printf produces
("%-5s","")
("%-5s","a") a
("%-5s","ab") ab
("%-5s","abcdefg") abcdefg

5 Floating Point

Floating point numbers are those like 3.1415 that
have a decimal point someplace inside. This is in
contrast to ordinary integers like 27 that have no
decimal point.

All the same flags and rules apply for floating
point numbers as do for integers, but we have a few
new options. The most important is a way to spec-
ify how many digits appear after the decimal point.
This number is called the precision of the number.

For ordinary commerce, prices are often men-
tioned as whole dollars or as dollars and cents (zero
or two digits of precision). For gasoline, prices are
mentioned as dollars, cents, and tenths of a cent
(three digits of precision). Here are some exam-
ples of how to print these kinds of numbers. Let
e=2.718281828.

printf produces
("%.0f",e) 3
("%.0f.",e) 3.
("%.1f",e) 2.7
("%.2f",e) 2.72
("%.6f",e) 2.718282
("%f",e) 2.718282
("%.7f",e) 2.7182818

Notice that if a dot and a number are specified, the
number (the precision) indicates how many places
should be shown after the decimal point.

Notice that if no dot and precision are specified for
%f, the default is %.6f (six digits after the decimal
point).

Notice that if a precision of zero is specified, the
decimal point also disappears. If you want it back,
you must list it separately (after the %f format spec-
ifier).

We can specify both a width and a precision at
the same time. Notice especially that 5.2 means
a total width of five, with two digits after the deci-
mal. It is very common and natural to think it
means five digits in front of the decimal and
two digits after, but that is not correct. Be
careful.

printf produces
("%5.0f",e) 3
("%5.0f.",e) 3.
("%5.1f",e) 2.7
("%5.2f",e) 2.72
("%5.7f",e) 2.7182818

We can also combine precision with the flags we
learned before, to specify left justification, leading
zeros, plus signs, etc.

printf produces
("%5.1f",e) 2.7
("%-5.1f",e) 2.7
("%+5.1f",e) +2.7
("%+-5.1f",e) +2.7
("%05.1f",e) 002.7
("%+05.1f",e) +02.7
("% 05.1f",e) 02.7
("%- 5.1f",e) 2.7

6 Designing The Perfect Spec

If you are designing a printf format specifier, the
first step is to decide what kind of a thing you are
printing. If it is an integer, a float, a string, or a char-
acter, you will make different choices about which
basic format to use.

The second big question is how wide your field
should be. Usually this will be the size of the biggest
number you ever expect to print under normal cir-
cumstances. Sometimes this is controlled by the
amount of space that is provided on a pre-printed
form (such as a check or an invoice).

Decide what you would like printed under a va-
riety of circumstances. In this paper we have of-
ten illustrated the results by using a small posi-
tive number, a small negative number, an oversized
positive number, and an oversized negative number.
You should include this options as well as large (but
not oversized) numbers. Design your format for the
biggest number that you would normally expect to
see.

7 Hints for the Test

The printf test includes a variety of matching prob-
lems. They are designed to be tricky, and student
feedback indicates that if anything, they are more
tricky that expected.

You can use the process of elimination to make
this test very fast and accurate. As you look at a
common feature in the answer line, you can rule out
all those printf statements that do not have that
feature. Very quickly you can narrow your options
to one or two.

7.1 Easy Features

It is easy to see if the short numbers have leading
zeros. If so, there must be a zero in the formatting
specification.

It is easy to see if the positive numbers have plus
signs. If so, there must be a plus in the formatting
specification.

7.2 Before, Between, and Behind

The next thing to watch for is the before, between,
and behind of the number that is printed. In a for-
matting specification like x%5dz there is an x before
the number and a z behind the number. The x and
z are not part of the format specification, but they
are part of the printed result. Everything else that
prints is “between.”

To decide whether there is anything before or be-
hind a number, look at the oversized negative num-
ber. Any spaces before it are surely before the for-
mat specification. Any spaces behind it are surely
behind the format specification. Here is an example.

If -2035065302 prints as -2035065302 , you can
be sure that the printf string is %... , with two
spaces before the formatting specification and one
space behind. That is because all the print positions
between (the % and whatever goes with it) are used
up by the oversized number.

Once you have determined what is before and be-
hind, you can use that information to match against
the matching choices. Often this will give you the
answer directly.

7.3 The Invisible Plus Sign

Compare the oversized negative number to the over-
sized positive number. If the positive number has
an extra space in front, it is an invisible plus sign.
If there is no extra space, there is no invisible plus
sign.

7.4 Left Justification

Subtract the before and behind. Look at what is left.
Look at the small negative number. Where are the
extra spaces printed? If the are in front, the number
is right justified. If they are in back, the number is
left justified. If they are in front and in back, you
did something wrong.

8 Conclusion

The printf function is a powerful device for print-
ing numbers and other things stored in variables.
With this power there is a certain amount of com-
plexity. Taken all at once, the complexity makes
printf seem almost impossible to understand. But
the complexity can be easily unfolded into simple
features, including width, precision, signage, justi-
fication, and fill. By recognizing and understand-
ing these features, printf will become a useful and
friendly servant in your printing endeavors.

