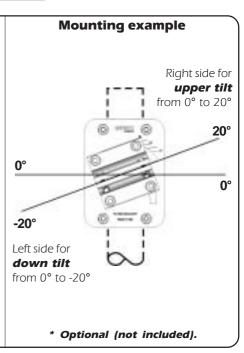
MOUNTING INSTRUCTIONS

Spare parts: p/n SA197

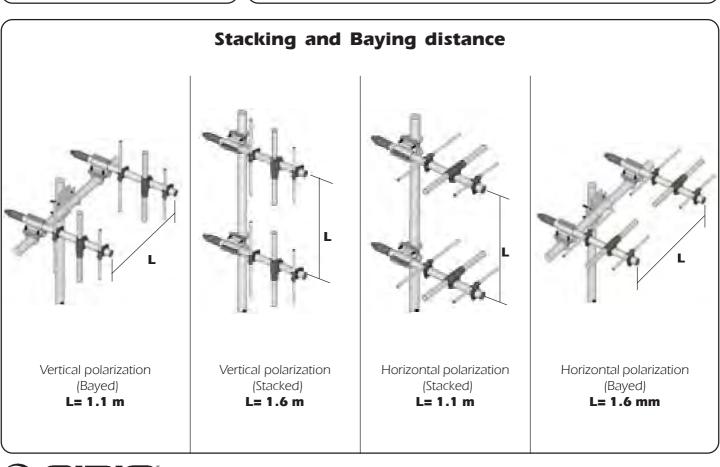
Materials: extruded aluminum Hardware: stainless & zinc plated steel Dimensions: 80 x 76 x 65 mm

Weight: 460 gr

Part List		
Q.ty	Description	
1	Extruded aluminium bracket	
2	Steel bracket	
2	M8x200 U-bolt	
4	M8 Grower washer	
4	M8 Hexagonal nut	
2	M6x20 Hexagonal head screw	
2	M6 Grower washer	
2	M6 Hexagonal nut	



Order p/n: 2519803.00


Materials & Hardware: zinc plated steel Dimensions: 110 x 150 x 6 mm.

Weight: 800 gr

Part List		
Q.ty	Description	
1	110x150x6 Tilting bracket	
4	M8x25 Spheric head screw	
4	M8 Grower washer	
4	M8 Hexagonal nut	

WY155-3N

155-175 MHz Base Station 3 Element Yagi Antenna

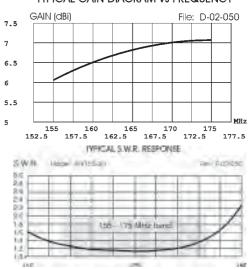
DESCRIPTION


Base station antenna conceived by using an innovative feed system studied and applied to have highly symmetrical radiation pattern in both planes (E and H). It's completely computer designed to get high performances of gain and front-to-back in the working band. All aluminium parts are protected by anodized treatment, hardware are of Stainless steel or zinc plated steel, mounting bracket is of extruded aluminium for the best strength and the connector is placed in rear position for an easily access. To increase the antenna gain please install it in vertical stacked array. **Patent pending applied**.

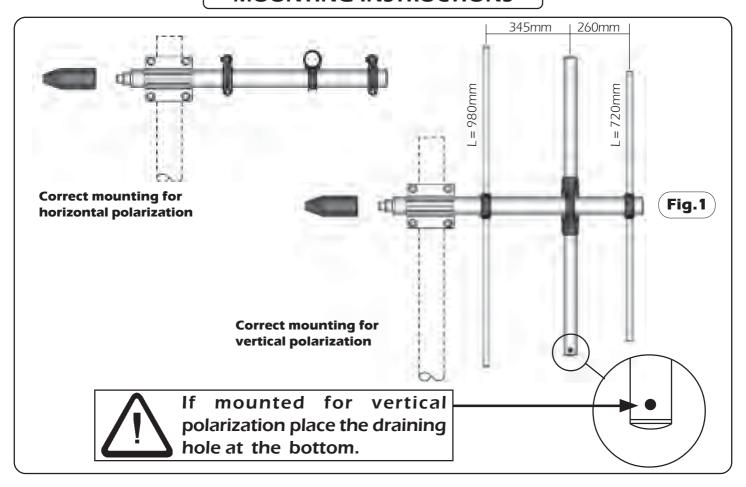
TECHNICAL DATA

Electrical Data

Туре	3 elements Yagi
Frequency range	155 - 175 MHz
Impedance	50 Ω Unbalanced
Polarization	Linear Vertical or Horizontal
Radiation (H-plane)	beamwidth at -3 dB= 130° at 165 MHz
Radiation (E-plane)	beamwidth at -3 dB= 70° at 165 MHz
Max Gain	7 dBi
Front to Back ratio	≥ 16 dB
S.W.R. in bandwidth	≤ 1.5:1
Max Power	200 Watts (CW) at 30°C
Feed system / Position	RG303 Teflon coax with balun / inside boom
Lightning protection	DC-ground
Connector	N-female with rubber protection cap

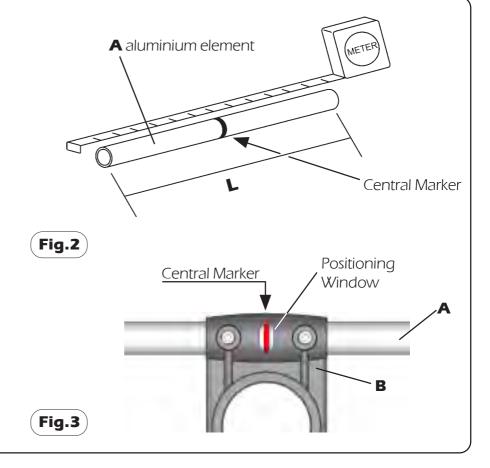

TYPICAL RADIATION PATTERN at 165 MHz

Mechanical Data


Materials	Anodized 6063-T5 Aluminium,
	Thermoplastic UV stabilized, Chromed Brass
Wind load / resistance	110 N at 150 Km/h / 160 Km/h
Wind surface	0.088 m ²
Dimensions (approx.)	990 x 985 mm
Weigth (approx.)	1680 gr
Turning radius	950 mm
Operating temperature	-40° C to +60° C
Mounting Mast	Ø 35-52 mm

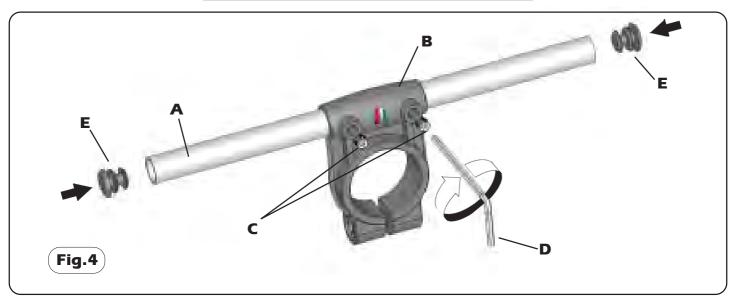
TYPICAL GAIN DIAGRAM vs FREQUENCY

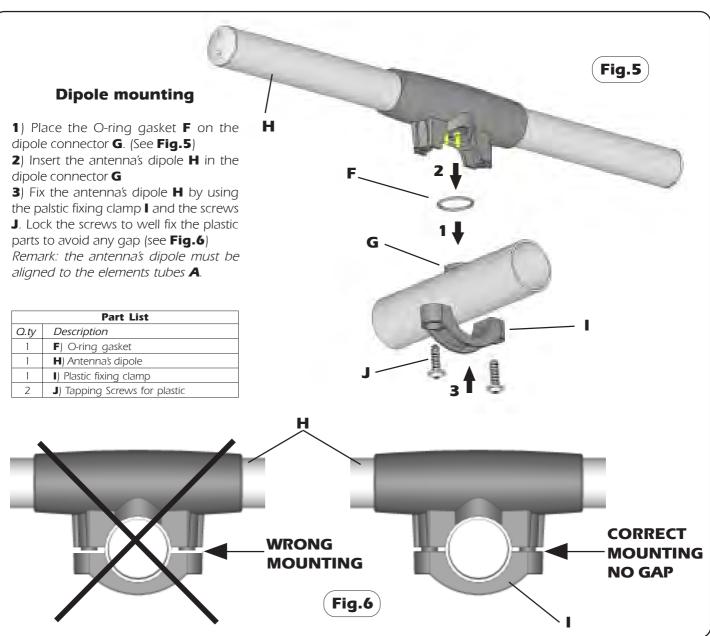
MOUNTING INSTRUCTIONS


Element Mounting

- 1) By means of a meter measure the aluminium elements **A** and position them in the plastic support **B** of the boom according to **fig.1**.
- **2**) Place the reference marker of the aluminium element **A** in the centre of the plastic support **B** (see **fig. 3**) and lock the screws **C** by the supplied key **D** (**fig. 4**). When the screws touch the aluminium tubes you can finally lock them turning for 1.5 turns.

Warning: do not exceed 1.5 turns. The plastic support threads could be damaged.


3) Insert the plastic caps **E** on the aluminium elements **A** (see **fig. 4**)


Part List		
O.ty	Description	
2	A) Aluminium tubes (2 different length)	
4	C) M5x6 Hexagon socket set screw	
1	D) 2.5mm Hexagonal key	
4	E) Plastic cap	

MOUNTING INSTRUCTIONS

